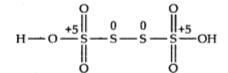


REDOX REACTIONS

Question 1. Assign oxidation number to the underlined elements in each of the following species:

TO	iowing spe	ecies:						
(a)	NaH2PO4	(b) NaH <u>S</u> O ₄	(c) $H_4 \underline{P}_2 O_7$	(d) $K_2 \underline{MnO_4}$				
(e)	Ca <u>O</u> ₂	(f) Na <u>B</u> H ₄	(g) $H_2 S_2 O_7$	(h) $KAl(\underline{SO}_4)_2.12H_2O$				
An	swer:							
(a)	(a) - +1 +1 -2							
	P in Na $H_2 P O_4$							
	(+1) + 2(+1) + x + 4 (-2) = 0							
	x	+3-8 or x = +	-5					
(b)	S in NaHSO ₄							
	+1 +1 x -2							
	Na HS O_4							
	(+1) + (+1)	+x+4(-2) = 0						
		x-6 = 0						
		x = +6	6					
()	Dia IL D. O							
(c)	P in $H_4 P_2 O_7$ +1 x -2							
	$H_4 P_2 O_7$							
		+ 7 (-2) = 0						
		2x - 10 = 0		*				
		x = +5						
(d)	Mn in K_2MnO_4 +1 x -2							
	$K_2 MnO_4$							
		+4(-2) = 0						
		x-6 = 0						
		x = +6 oxyge						
(e)	Let the oxidation	number of CaO_2 be		\therefore over No. of $a = \pm 2$				
		2 + 2x = 0 $x = -1$	(\therefore oxy No. of $a = +2$)				
	Thus, oxidation nu	mber of O in $CaO_2 = -$	-1.					
(f)) In NaBH ₄ , H is present as hydride ion. Therefore, its oxidation number is -1 .							
	Thus,							
	+1 x -1	· 1 (+1) + * ·	+1(-1) = 0 or $x =$	+3				
	Na B H ₄ \therefore 1 (+1) + x + 4 (-1) = 0 or x = +3 Thus, the oxidation number of B in NaBH ₄ = +3.							
(g)	+1 x -2		4					
677	$H_2 S_2 O_7$ ∴ 2 (+1) + 2 (x) + 7 (-2) = 0 or x = +6							
	Thus, the oxidation number of S in $H_2S_2O_7 = + 6$.							
(h)	+1 +3 x -2 +1		2 + 2 (2) + 12 (2 + 2)	1 - 2 = - + 6				
	K Al (S O_{4}) ₂ 12 (H ₂ O) or +1+3+2x+8 (-2) + 12 (2 × 1 - 2) or x = +6							
	Alternatively, since H_2O is a neutral molecule, therefore, sum of oxidation numbers of all the atoms in H_2O may be taken as zero. As such water molecules may be							
	ignored white computing the oxidation number of S.							
	$\therefore + 1 + 3 + 2x - 1$							
	Thus, the oxidation	number of S in KAl(S	$50_4 p_2 .12 H_2 O = +6.$	•				

Question 2. What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?


(a) KI_3 (b) $H_2S_4O_6$ (c) Fe_3O_4 (d) CH_3CH_2OH (e) CH_3COOH . **Answer:** (a) In KI₃, since the oxidation number of K is +1, therefore, the average oxidation number of iodine = -1/3. But the oxidation number cannot be fractional. Therefore, we must consider its structure, $K^+[I - I < -I]^-$. Here, a coordinate bond is formed between I₂ molecule and I⁻ ion. The oxidation number of two iodine atoms forming the I₂ molecule is zero while that of iodine forming the coordinate bond is -1. Thus, the O.N. of three I atoms, atoms in KI₃ are 0, 0 and -1 respectively.

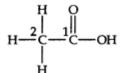
(b) By conventional method. O.N. of S in $H_2S_4O_6 = H_2S_4O_6^{-2}$

or 2 (+1) + 4x + 6 (-2) = 0 or x = +2.5 (wrong)

But it is wrong because all the four S atoms cannot be in the same oxidation state.

By chemical bonding method. The structure of $H_2S_4O_6$ is shown below:

The O.N. of each of the S-atoms linked with each other in the middle is zero while that of each of the remaining two S-atoms is +5.


(c) By conventional method. O.N. of Fe in $\operatorname{Fe}_3 \operatorname{O}_4^2$ or 3x + 4 (-2) = 0 or x = 8/3.

By stoichiometry. $\operatorname{Fe_3O_4} \equiv \operatorname{Fe_3O} + 2 \operatorname{Fe_2O_3}^{+2} - 2 \operatorname{Fe_2O_3}^{+3} + 2 \operatorname{ON}$. of Fe in $\operatorname{Fe_3O_4}$ is + 2 and + 3

(d) By conventional method. O.N. of C in $CH_3CH_2OH = C_2 H_6 O$ or 2x + 6 (+ 1) + 1 (- 2) = 0 or x = -2.

(e) By conventional method. CH₃COOH = $C_2^{x} H_4^{+1} O_2^{-2}$ or 2x + 4 - 4 = 0 or x = 0By charginal handing method. C is attached to three *H* atoms (loss sharing)

By chemical bonding method, C_2 is attached to three *H*-atoms (less electronegative than carbon) and one-COOH group (more electronegative than carbon).

therefore, O.N. of $C_2 = 3(+1) + x + 1(-1) = 0$ or x = -2

 C_1 is, however, attached to one oxygen atom by a double bond, one OH (O.N. = -1) and one CH₃ (O.N. = +1) group, therefore, O.N. of C_1 = + 1 + x + 1 (-2) + 1 (-1) = 0 or x = +2

Question 3. Justify that the following reactions are redox reactions: (a) $CuO(s) + H_2(g) --> Cu(s) + H_2O(g)$ (b) $Fe_2O_3(s) + 3CO(g) --> 2Fe(s) + 3CO_2(g)$ (c) $4BCI_3(g) + 3LiAIH_4(s) --> 2B_2H_6(g) + 3LiCI(s) + 3AICI_3(s)$ (d) $2K(s) + F_2(g) --> 2K + F^-(s)$ Answer: (a) $\operatorname{CuO}^{+2-2}_{\mathrm{uO}}(s) + \operatorname{H}^{0}_{2}(g) \longrightarrow \operatorname{Cu}^{0}(s) + \operatorname{H}^{+1-2}_{2}(g)$

Here, O is removed from CuO, therefore, it is reduced to Cu while O is added to H_2 to form H_20 , therefore, it is oxidised. Further, O.N. of Cu decreases from + 2 in CuO to 0 in Cu but that of H increases from 0 in H_2 to +1 in H_20 . Therefore, CuO is reduced to Cu but H_2 is oxidised to H_20 . Thus, this is a redox reaction.

(b) $\operatorname{Fe}_2 \overset{+3}{O}_3(s) + 3 \overset{+2}{\operatorname{CO}}(g) \longrightarrow 2 \overset{0}{\operatorname{Fe}}(s) + 3 \overset{+4}{\operatorname{CO}}(g)$

Here O.N. of Fe decreases from +3 if Fe_2O_3 to 0 in Fe while that of C increases from +2 in CO to +4 in CO₂. Further, oxygen is removed from Fe_2O_3 and added to CO, therefore, Fe_2O_3 is reduced while CO is oxidised. Thus, this is a redox reaction.

(c)
$$4 \stackrel{+3-1}{\text{BCl}_3}(g) + \stackrel{+1+3-1}{\text{LiAlH}_4}(s) \longrightarrow 2 \stackrel{-3}{\text{B}_2} \stackrel{+1}{\text{H}_6}(g) + 3 \stackrel{+1}{\text{Li}} \stackrel{-1}{\text{Cl}}(s) + 3 \stackrel{+3}{\text{Al}} \stackrel{-1}{\text{Cl}_3}(s)$$

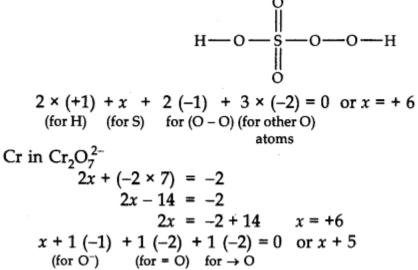
Here, O.N. of B decreases from +3 in BrCl₃to -3 in B₂H₆ while that of H increases from -1 in LiAlH₄to +1 in B₂H₆. Therefore, BCl₃ is reduced while LiAlH₄ is oxidised. Further, H is added to BCl₃ but is removed from LiAlH₄, therefore, BC13 is reduced while LiAlH₄ is oxidised. Thus, it is a redox reaction.

Here, each K atom as lost one electron to form K+ while F_2 has gained two electrons to form two F^- ions. Therefore, K is oxidised while F_2 is reduced. Thus, it is a redox reaction. By chemical bonding, C_2 is attached to three H-atoms (less electronegative than carbon) and one CH_2OH group (more electronegative than carbon), therefore,

O.N. of $C_2 = 3 (+1) + x + 1 (-1) = 0$ or $x = -2 C_2$ is, however, attached to one OH (O.N. = -1) and one CH₃ (O.N. = +1) group, therefore, O.N. of $C_4 = +1 + 2 (+1) + x + 1 (-1) = 0$ or x = -2

Question 4. Fluorine reacts with ice and results in the change: $H_2O(S) + F_2(g) - --> HF(g) + HOF(g)$

Justify that this reaction is a redox reaction.


Answer: Writing the O.N. of each atom above its symbol, we have,

$$\overset{+1}{H_2O}$$
 $\overset{-2}{F_2}$ $\overset{0}{\longrightarrow}$ $\overset{+1}{H_1}$ $\overset{-1}{F_1}$ $\overset{+1}{H_2}$ $\overset{-2}{F_2}$ $\overset{+1}{\longrightarrow}$ $\overset{+1}{H}$ $\overset{-1}{F}$ $\overset{+1}{H}$ $\overset{-2}{F}$ $\overset{+1}{H}$ $\overset{+1}{F}$ $\overset{+1}{H}$ $\overset{+1}{H}$ $\overset{+1}{F}$ $\overset{+1}{H}$ $\overset{+1}{H}$ $\overset{+1}{F}$ $\overset{+1}{H}$ $\overset{+1}{H}$ $\overset{+1}{H}$ $\overset{+1}{F}$ $\overset{+1}{H}$ $\overset{$

Here, the O.N. of F decreases from 0 in F_2 to -1 in HF and increases from 0 in F_2 to +1 in HOF. Therefore, F_2 is both reduced as well as oxidised. Thus, it is a redox reaction and more specifically, it is a disproportionation reaction.

Question 5. Calculate the oxidation number of sulphur, chromium and nitrogen in H_2SO_5 , Cr_2O_2 and NOT. Suggest structure of these compounds. Count for the fallacy.

Answer: O.N. of S in H₂SO₅. By conventional method, the O.N. of S in H₂SO₅ is 2 (+1) + x + 5 (-2) = 0 or x = +8 This is impossible because the maximum O.N. of S cannot be more than six since it has only six electrons in the valence shell. This fallacy is overcome if we calculate the O.N. of S by chemical bonding method. The structure of H₂SO₅ is

Thus, there is no fallacy about the O.N. of N in NO₃-whether one calculates by conventional method or by chemical bonding method.

Question 6.Write formulas for the following compounds: (a) Mercury (II) chloride, (b) Nickel (II) sulphate, (c) Tin (IV) oxide, (d) Thallium

(I) sulphate, (e) Iron (III) sulphate, (f) Chromium (III) oxide. Answer: (a) Hg(II)Cl₂, (b) Ni(II)SO₄, (c)S_n(IV)O₂ (d) T₁₂(I)SO₄, (e) Fe₂(III)(SO₄)₃, (f) $Cr_2(III)O_3$.

Question 7. Suggest a list of substances where carbon can exhibit oxidation states from -4 to +4 and nitrogen from -3 to +5. Answer:

Compound	O.N. of Carbon	Compound	O.N. of Nitrogen
CH4	-4	NH ₃	-3
CH ₃ CH ₃	-3	$NH_2 - NH_2$	-2
CH ₂ =CH ₂ or CH ₃ Cl	-2	NH=NH	-1
CH≡≡CH	-1	N=N	0
CH_2Cl_2 or $C_6H_{12}O_6$	0	N ₂ O	+1
C ₂ Cl ₂ or C ₆ Cl ₆	+1	NO	+2
CO or CHCl ₃	+2	N ₂ O ₃	+3
C ₂ Cl ₆ or (COOH) ₂	+3	N ₂ O ₄	+4
CO ₂ or CCl ₄	+4	N ₂ O ₅	+5

Question 8. While sulphur dioxide and hydrogen peroxide can act as an oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as

oxidants. Why?

Answer: (i) In SO₂, O.N. of S is +4. In principle, S can have a minimum O.N. of -2 and maximum of +6. Question 18. Balance the following redox reactions by ionelectron method. (a) $MnO_4^{-}(aq) + I^{-}(aq) - - - > MnO_2(s) + I_2(s)$ (in basic medium) (b) $MnO_4^{-}(aq) + SO2(q) - --> Mn^{2+}(aq) + H_2SO_4^{-}(in acidic solution)$ (c) $H_2O_2(aq) + Fe2+(aq) - ---> Fe^3+(aq) + H_2O(1)$ (in acidic solution) (d) $Cr_2O_7^{2-}(aq) + SO_2(q) - Cr^{3+}(aq) + SO_4^{2-}(aq)$ (in acidic solution) **Answer:** (a) Do it yourself. (b) The balanced half reaction equations are: Oxidation half equation: $SO_2(q) + 2H_2O(l) - - > HSO_4^-(aq) + 3H^+(aq) + 2e^-$...(i) Reduction half equation: $MnO_4^{-}(ag) + 8H^{+}(ag) + 5e^{-} - - > Mn^{2+}(ag) + 4H_2O(I)$ (ii) Multiply Eq. (i) by 3 and Eq. (ii) by 2 and add, we have, $2MnO_4^{-}(ag) + 5SO_2(g) + 2H_2O(I) + H^{+}(ag) - - - > 2Mn^{2+}(ag) + 5HSO_4^{-}(ag)$ (c) Oxidation half equation: $Fe^{2+}(aq) - --> Fe^{3+}(aq) + e^{-}...(i)$ Reduction half equation: $H_2O_2(aq) + 2H^+(aq) + 2e^- - - > 2H_2O(I)$...(ii) Multiply Eq. (i) by 2 and add it to Eq. (ii), we have, $H_2O_2(aq) + 2Fe^{2+}(aq) + 2H^+(aq) - --> 2Fe^{3+}(aq) + 2H_2O(1)$ (d) Following the procedure detailed on page 8/23, the balanced half reaction equations are: Oxidation half equation: $SO_2(q) + 2H_2O(1) - - - > SO_4^{2}(aq) + 4H^+(aq) + 2e^- ...(i)$ Reduction half equation: $Cr_2O_72^-(aq) + 14H^+(aq) + 6e^- - - - > 2Cr^{3+}(aq) + 7H_2O(I) ...(ii)$ Multiply Eq. (i) by 3 and add it to Eq. (ii), we have,

 $Cr_2O_72^-(aq) + 3SO_2(q) + 2H^+(aq) - - - > 2Cr^{3+}(aq) + 3SO_4^{2-}(aq) + H_2O(l)$

.....